
Detecting Out-Of-Control Sensor Signals in Sheet
Metal Forming using In-Network Computing

Ike Kunze∗, Philipp Niemietz†, Liam Tirpitz∗, René Glebke∗, Daniel Trauth†, Thomas Bergs†, Klaus Wehrle∗
∗Communication and Distributed Systems · {kunze, tirpitz, glebke, wehrle}@comsys.rwth-aachen.de

†Laboratory for Machine Tools and Production Engineering (WZL) · {p.niemietz, d.trauth, t.bergs}@wzl.rwth-aachen.de
All authors are affiliated with RWTH Aachen University, Aachen, Germany

Abstract—The ongoing digitization of production enables the
collection of increasing volumes of data. These, in turn, allow
for data-driven analysis that has the potential for deepening
the process understanding by discovering previously unknown
connections between process components and parameters. With
these opportunities, however, come substantial challenges as cur-
rent industrial settings are inadequately equipped for handling
these large amounts of data. While setting up a local processing
infrastructure is challenging, the limited bandwidth within many
shop floors as well as their network access also make an upload
of all data to external compute capacities infeasible. What is
needed are local, process-aware filters that allow for significant
data reduction while retaining data of value that can be used for
the subsequent analysis. In this paper, we thus propose to leverage
In-Network Computing to dynamically detect different states of
the physical processes and then filter the sensor values on the
data path. Our presented architecture maps the state detection
to the switch-local controlplane while fast filtering decisions are
performed at line-rate in the dataplane, thus enabling flexible and
quick adjustments of the chosen sensor filtering. At the example
of a fine-blanking line, we consequently demonstrate that In-
Network Computing can sensibly support previously infeasible
data analysis techniques in the industrial production landscape.

Index Terms—Industrial communication, Communication sys-
tems, Edge computing, Software defined networking, Pattern
recognition, Condition monitoring, Clustering methods, Process
monitoring

I. INTRODUCTION

© IEEE, 2021. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: XXX.

Modern production systems are increasingly equipped with
sensor telemetry that allows for closely monitoring the in-
dustrial processes. Concepts such as the Industrial Internet of
Things (IIoT) [1] and Industry 4.0 [2] advocate for increas-
ingly interconnecting these systems locally, utilizing principles
of the Internet of Things (IoT). Going a step further, the Inter-
net of Production (IoP) [3] proposes to form a global network
of industrial systems that also crosses company borders. The
main benefit of these concepts is that the available abundance
of data can be connected and then used to create knowledge
— an unachievable improvement if data stays in isolated data
silos. The derived knowledge can then be fed back to, e.g.,
improve the production processes or the product quality.

At the same time, handling these enormous amounts of data
raises fundamental challenges [4]. Most imminently, existing
data analysis frameworks assume a logical centralization of the
data which thus has to be moved from its sources to central
locations [5]. This moving of data can severely strain or even
overload existing communication infrastructures, especially if

off-premise compute capacities are only reachable via con-
strained network connections. Alternatively, companies have
to make significant investments to either establish on-premise
compute resources or upgrade the communication infrastruc-
ture. Consequently, relying solely on either option is infeasible.
Thus, companies are in need of a middle ground that resorts
to external resources when necessary, but simultaneously tries
to keep the load on the infrastructure low by sensibly reducing
the transmitted data volume.

We tackle this goal by leveraging the novel In-Network
Computing (INC) paradigm, i.e., utilizing compute resources
in networking devices as well as their privileged position
on the data path, to achieve meaningful data reduction that
is precisely oriented at the application needs. For this, we
concretize our previous proposal of integrating data processing
into the data flow [6] and devise well-defined INC tasks
to enhance the operation of a fine-blanking manufacturing
system. More specifically, this paper contributes the following:

• We analyze the seasonal patterns of force signals captured
at our fine-blanking system and identify varying required
information levels for different process intervals.

• We design an INC pipeline that can detect these phases
based on the seasonal patterns and subsequently adjusts
the resolution of the forwarded information.

• We identify intriguing aspects for future research that are
relevant beyond our own work.

Structure. In Sec. II, we introduce the fine-blanking system as
a representative for sheet metal forming processes and identify
and analyze the seasonal patterns of sensor values. We then
discuss how related work handles such periodic data in Sec. III
before presenting the INC paradigm in more detail in Sec. IV.
Based on our findings on the fine-blanking system, we then
present our approach that is capable of filtering data exactly
to the needs of the application. After laying out our future
research directions in Sec. VI, we finally conclude the paper.

II. SEASONAL PATTERNS IN FINE-BLANKING

Sheet metal forming processes are used for mass production
in automotive and aerospace industry, e.g., for large car
body parts or small safety critical components for breaks or
engines [7]. Such processes are, above all, characterized by
their stability: once the tool and its process parameters are set
up correctly, the process can produce parts within the tolerance
range for thousands of strokes. However, process forces as



well as the resulting workpiece quality vary substantially
over a series of strokes, and these variations, often referred
to as process noise, are not yet completely understood by
engineers [8]. The complex interplay of tool design, wear
progression of its active components, material properties, and
the fact that the process is not easily accessible for direct
measures of important system parameters hitherto hinders the
understanding of such variations. Yet, a better understanding in
this domain can support engineers to further push the tolerance
limits of the process and thus strengthen economic efficiency.
Fine-blanking. In this study, we focus on the fine-blanking
process which is used for parts with strict quality requirements
to the shearing surface that are typically important for func-
tionality of the corresponding workpieces. Fine-blanking is
characterized by the flow shear process that results in a clean-
cut and takes place in a compressive stress-dominated process
area [7], leading to a shearing surface with up to no tear-off.
This high quality of the shearing surface makes subsequent
finishing processes unnecessary and cuts down production time
and costs. In contrast to conventional blanking, fine-blanking
presses are triple-acting machines: the V-ring force (blank
holder) and counter punch forces are generated hydraulically,
and the main blanking (punch) force can be either mechanical
or hydraulic. Fig. 1 illustrates the interaction of these forces.
Process Monitoring. The complex interaction of the three
process forces makes monitoring them particularly interesting
and research has shown that such sensor signals contain valu-
able information about the working conditions of the process.
These include the wear state of the tool [9], quality features
of the resulting workpiece [10], machine faults, misfeed, and
thickness variations [11]. Our fine-blanking tool is enhanced
with substantial sensor equipment that can, among others,
measure the force signals, acoustic emission, and acceler-
ation [12]. The multitude of sensors combined with their
high frequencies and high sample rates produces very large
amounts of data [6] which makes the application of sensible
data reduction techniques an intriguing option. For ease of
illustration, we focus on force signals for the rest of this paper.
Seasonal Sensor Patterns. Due to the repeating nature of
fine-blanking of an almost identical process, the occurring
seasonal patterns in the signals are the starting points for any
analysis and often referred to as sensor profiles [13]. As an
example, Fig. 2 shows the sensor profiles of the three active
process forces of fine-blanking which will, to a high degree,
repeat stroke-by-stroke. Consequently, even minor anomalies,
i.e., deviations from or changes of these characteristic patterns
can represent changes in the underlying physical conditions of
the process and are important to track and monitor in detail.
Process Phases. Anomalies are more likely to occur when
the process is not in the ideal operating state as illustrated in
Fig. 3. After a cold-start, sheet metal forming processes first
require a ramp-up time to heat up the machine to its operating
temperature and corresponding changes in temperature directly
affect important material and lubricant parameters. In Fig. 3,
these impacts can be noticed, e.g., in the form of fluctuating
and constantly increasing maximum punch forces and it is

𝐹! Punch force 𝐹" Blank holder force 𝐹# Counter punch force

1. V-ring

𝐹#

𝐹" 𝐹"𝐹!

2. Fine-Blanking

𝐹#

𝐹" 𝐹"𝐹!

3. StrippingPunchBlank holder
Sheet metal

Counter punch
Workpiece

Fig. 1. The fine-blanking operation in detail: First, the material is clamped by
applying the blank holder force. Second, the punch and counter punch forces
are applied and the actual blanking process takes place. Lastly, the sheet metal
is stripped of the punch.

Fig. 2. The three active process forces (punch, counter punch, and blank
holder) show seasonal patterns during fine-blanking of 3 mm thick steel.

important to monitor these fluctuations and their impact on
the resulting workpiece quality.

Once the machine is in operating temperature (in-control),
there are still variations and fluctuations, but they are less
severe. Consequently, while they should still be monitored,
an in-depth analysis for each and every blanking operation
may not be required. However, as soon as process conditions
change significantly, e.g., caused by lubrication errors or wear
increase, force signals will change their characteristics ac-
cordingly (out-of-control). These changes are again of specific
interest in the analysis and understanding of the process.
Takeaway. The different phases of the fine-blanking process
contain different levels of information for the process analysis.
Data reduction techniques that account for these phases, e.g.,
by identifying the ramp-up phase or when the process leaves
the in-control phase, and correspondingly filter or preprocess
the sensor signals thus have the potential of substantially
reducing the amount of data that is transmitted and processed,
while still keeping the data of interest available.

In the following, we discuss approaches by related work to
cover these requirements.

III. RELATED WORK IN INDUSTRIAL DATA PROCESSING

The periodic structure of the measured force signals as well
the general underlying streaming characteristics of our fine-
blanking setup are perfect candidates for the application of
stream data processing techniques. Well-known frameworks,
such as Apache Storm or Apache Flink, however, assume a
logical centralisation of the processed data, i.e., it first needs
to be collected, before it can be analyzed. In the context of
the IIoT and the IoP, however, ever increasing data volumes



Fig. 3. Based on the fluctuations of the maximum punch force during fine-
blanking of 3 mm thick steel, three execution phases can be identified: ramp-
up, in-control, and out-of-control. Note that the machine was paused and
restarted after roughly 550 strokes.

pose novel challenges for the data analysis frameworks [4]. In
particular, the application of generic data stream processing
techniques is no longer seen as a universally feasible op-
tion [5]. Among other reasons, uploading all data to powerful
data centers that are capable of (i) handling the large volumes,
and (ii) performing the required analytical tasks, is inhibited
by upload bandwidth limitations of the companies. Thus, while
data analysis in the data center is possible, collecting the data
and bringing it to the data center is challenging. What is
consequently needed are ways to cope with the large amount of
data in a local context while reducing the amount of required
processing capacities.

One solution to the large data volumes is tuning the gran-
ularity of the recorded data to the exact level that is needed
for analysis. Lipp et al. [14], e.g., investigate the possibility to
tune sensor reading intervals of an OPC-UA based system to
inherent process phases of the controlled process. Using well-
chosen reading intervals for the different phases, this approach
allows for a significant data reduction while simultaneosuly
keeping the exact amount of data necessary for performing
the required analytical tasks. However, it builds upon statically
defined phases with fixed phase transitions and its focus on
data extraction does not allow for data preprocessing.

As an alternative solution, Qi et al. [15] propose combining
edge-based analysis and filtering steps with a more complex
analysis leveraging powerful cloud environments. While their
approach addresses the problem, the use of edge resources for
filtering the data only shifts the bottleneck, because the edge
devices still need to handle significant data volumes [6] and
the company infrastructure is, in this case, still flooded with
sensor data. To address this issue, the emerging research area
of INC focuses on substantially reducing the network load
even before the data reaches the edge devices.

IV. RECENT ADVANCES IN IN-NETWORK COMPUTING

In-Network Computing (INC) advocates for deploying sen-
sible functionality on networking devices which are capable
of processing very high data rates and already lie on the data
path. Data thus does not have to be redirected to edge devices
for filtering, making INC a prime candidate for our use case.

In recent years and, especially, following the introduction
of the P4 programming language [16], networking devices

have become increasingly programmable and there is a grow-
ing market of P4 programmable devices. These range from
purely software-based solutions, such as the P4 behavioral
model (bmv2) [17], to smart network interface cards, such
as the Netronome Agilio series [18], that map the bmv2 to
special packet processors. There are even first programmable
switching ASICs, such as the Intel Tofino [19].
P4 Principles. The core design choice of these platforms is
a separation of concerns between a high-speed dataplane and
slower controlplane. While the former can process packets at
line-rate, i.e., up to several hundreds of Gbit/s in the case of
Tofino for example, only simple operations are possible, e.g.,
multiplications are often already too complex [20]. In contrast,
the latter typically runs on a standard CPU co-located with the
dataplane and can thus perform arbitrary computations albeit
at much slower and less predictable speeds. Finding a clever
division of labor between the dataplane and the controlplane
by leveraging the individual strengths of the two components
can thus be very beneficial for application performance.
Research Focus. Most research investigates the applicability
of INC to core networking tasks, such as active queue manage-
ment [20], load balancing [21], or heavy-hitter detection [22].
However, there is also substantial work that broadens the
scope of INC to application-level functionality, including the
deployment in industrial systems [23]–[25].

Of particular interest for our work is the finding that
INC aggregation tasks co-designed with the overall analysis
function can provide significant benefits [26]. These findings
nicely fit into our previously proposed general architecture [6]
in which we argue that integrating processing steps into the
data path can be an effective measure for addressing the data
volume challenges laid out before. In this work, we thus
concretize our general architecture by matching requirements
and analysis steps of the fine-blanking tool (see Sec. II) to
the capabilities of programmable networking devices. In the
following, we present our concrete approach for enhancing a
fine-blanking tool monitoring system using INC.

V. DETECTING SENSOR SIGNALS IN THE NETWORK

Our fine-blanking tool produces large amounts of data that
follow a seasonal pattern (see Sec. II). Additionally, we have
identified different process phases with different requirements
regarding the forwarded data volumes. Based on these find-
ings, we now aim to shape a filtering and preprocessing
architecture that is capable of acquiring the right volume of
data at the right moment. More specifically, we aim to detect
the different process phases of our fine-blanking tool based on
a stroke-by-stroke level (see Fig. 3) and enhance the ensuing
analysis by leveraging the actual seasonal pattern of the force
signals (see Fig. 2). Before we present the architecture in more
detail, we first condense our previous findings on the different
phases and their required information levels.

A. Process Phases And Information Levels

While our fundamental approach is also applicable to other
systems, its effectiveness is highly dependent on a precise



Seite 9

Farben angepasst

Farbauswahl

Schriften in Arial
- 8 pt nur für Quellenangaben

- 11 pt

- 14 pt (Überschriften in fett)
Strichstärken

- 0,5 pt
- 1,25 pt

Architecture V6

Switch

Fine-blanking line

Edge

Decide

Out-of-control

Ramp-Up
In-control

Sample

Disable Discard Inspect

Classify
2

3
Filter

Cloud

Aggregate
Max
Min
Sum
Count

Aggregated

1

…1 2 n
contained in n packets

Fig. 4. Analyzing the data already in the network allows to quickly react to different machine states. (1) Our approach first aggregates all sensor readings
belonging to a single stroke into one aggregated packet. (2) Based on this packet, the subsequent classification step uses grid-based density clustering to detect
the current phase of the fine-blanking line. (3) Depending on the current process phase, the switch can then decide on the dataplane how to process individual
sensor readings.

tailoring to the concrete setting. In the case of our fine-
blanking line, we set the following objectives:
Identify Ramp-Up Phase. As presented in Sec. II and visual-
ized in Fig. 3, the operation of our fine-blanking tool begins
with a ramp-up phase in which the process heats up to its
operating temperature. In this phase, the changes in temper-
ature, e.g., cause the force signals to steadily increase and
fluctuate significantly, leading to a higher number of expected
anomalies. This warrants a closer inspection of the produced
signals to enable a fine-grained analysis, e.g., regarding the
quality of the produced product.
In-Control Phase Sampling. After the end of the ramp-up,
the machine enters a steadier in-control phase. In this phase,
there are only minor fluctuations and the produced products
have a high quality. Here, we do not have to closely inspect
each stroke in detail and can thus reduce the signal resolution,
e.g., by sampling at lower frequencies, only inspecting every
other stroke, or even completely discarding sensor signals.
Out-Of-Control Phase Detection. During the in-control phase,
the physical characteristics of the process can change over
time, e.g., due to malfunctioning components or steady wear
increase of tool components. It is important to quickly detect
these out-of-control phases and subsequently increase the
resolution of the signals again to allow for closer inspection
and complex data analysis.
Combined Goals. To summarize, we aim to (i) identify the
different process phases by comparing force signals on a
stroke-by-stroke level, and (ii) adjust the resolution of the
forwarded sensor information accordingly. In the following,
we present our design that leverages both dataplane and
controlplane resources to allow for more sophisticated data
analyses of a variety of sensors.

B. Architecture

The central component of our architecture is a pro-
grammable networking switch that is capable of first iden-

tifying the current state of the fine-blanking operation and
then performing appropriate tasks to address the situation. We
illustrate a high-level look on this structure on the left side
of Fig. 4: several sensors monitor the fine-blanking tool and
transmit their readings to the switch which, in turn, decides
whether to discard, filter, or forward the readings. Additionally,
it can be either manually or automatically decided to discard
or activate specific sensors, e.g., if a sensor is only interesting
during specific events. The decision process is (i) distributed
among the dataplane and the controlplane, and (ii) internally
divided into the three steps shown on the right side of Fig. 4. In
the following, we discuss the individual steps in more detail.

1) Aggregate: A single stroke operation of the fine-
blanking process consists of more than 10 000 individual
sensor readings. Performing a complete stroke-by-stroke com-
parison thus requires holding these readings in memory which
is not feasible on current P4-based platforms. Consequently,
we opt to first detect individual strokes based on their sensor
profile. We then aggregate characteristic values from all force
values of a stroke to derive an abstract representation for
subsequent pipeline steps. As this procedure needs to process
all sensor readings, it is realized entirely in the dataplane.
Stroke identification. Once a fine-blanking process has been
set up, operation durations and sensor profiles remain similar.
We can thus simply identify the start of a stroke by detecting a
change from a value close to zero to a larger value, accounting
for the steep force increase at the start of the stroke (see Fig. 2).
Similarly, we assume the end of the stroke if the force values
stay close to zero for a number of consecutive sensor readings.
Aggregation. During a stroke, the dataplane maintains the
maximum and minimum forces, the sum over all force values
observed for a single stroke, which is equivalent to the total
force applied on the sheet metal, as well as the number of data
points considered. When the end of a stroke is detected, these
characteristic values are transmitted to the next processing



step in the form of a single, aggregated packet. Each packet
entering the second step, now represents a single stroke.

2) Classify: The second processing step applies a clustering
algorithm to the aggregated, multidimensional data points
to identify the current process phase. Since programmable
switches lack support for loop-based programming [27] and
have limited computational capabilities, most established al-
gorithms for clustering, or even stream-based clustering cannot
be implemented solely on the dataplane. However, as described
in Sec. IV (P4 Principles), we can distribute compute tasks
between the dataplane and the controlplane. The grid-based
density clustering (GBDC) approach by Chen et al. [28]
differentiates between online and offline processing and is thus
a well-suited candidate for this purpose.
GBDC – Online. The online component of the algorithm is
designed for streaming data; thus, it does not require loops
and only uses simple calculations. In short, every observed
dimension is divided into n sections, resulting in a grid of d-
dimensional partitions. Instead of maintaining the position of
every individual data point in this d-dimensional data space,
the approach only maintains the so-called density for each
partition which is an indicator for the number of data points
that recently hit that partition. To focus on recent data points,
the densities of unhit partitions are constantly reduced. We
map this online component and the corresponding maintenance
of partition densities to the dataplane.
GBDC – Offline. The offline component of GBDC uses
the previously derived densities to compute clusters from
neighboring partitions with high density. As this process does
not need to work on individual data items, yet requires higher
computational capabilities, we map it to the controlplane. In
fact, using the controlplane generally allows for deploying
algorithms of arbitrary complexity for these computations.

By regularly computing the current clustering, the con-
trolplane can identify phase transitions and trends in the
aggregated force data. For example, a large number of medium
density partitions could indicate an out-of-control process
while a small number of neighboring partitions with high
density would indicate a stable process. Similarly, by com-
paring successive “snapshots”, the controlplane can detect
trends such as a rising force, indicating the ramp-up phase.
If the controlplane detects a phase change, it will notify the
dataplane of the currently detected phase which can then adjust
the handling of the raw sensor data.

3) Decide: Following the classification by the controlplane,
per-packet decisions are again solely performed by the data-
plane to reduce the data volume in the network and maximize
the utility of the transmitted data. In the in-control phase, e.g.,
detailed force data might not be required and the switch may
(a) drop all packets with individual force values and only
communicate the machine state via the aggregation packets
generated in Sec. V-B1, or (b) sub-sample the raw data and
only transmit a smaller number of individual readings. If an
unstable process state is detected, the dataplane will redirect
the unfiltered force values to an external system for further
analysis, thus ensuring an in-depth analysis of critical data.

By combining the strengths of the fast dataplane and the
more powerful controlplane, our pipeline can handle large
amounts of raw data and react quickly to phase shifts in the
process while limiting network communication to useful data.

C. Limitations

Since our approach has to conform to the capabilities of the
dataplane in multiple regards, certain limitations apply. First,
grid-based clustering is, by design, an approximation, because
it does not preserve the individual data points. Therefore,
the size of the individual partitions determines the accuracy
of the resulting clustering. While smaller partitions increase
accuracy, they also lead to a larger number of partitions that
need to be maintained. The number of partitions is limited by
the resources of the programmable switch. Furthermore, the
density of the individual partitions can only be approximated
due to the limited arithmetic capabilities on the dataplane.
Despite these limitations, we expect the accuracy of our
approach to be sufficient for our application.

VI. TOWARDS DEPLOYMENT IN INDUSTRIAL
PRODUCTION LINES

The basis of our work is a proof-of-concept implemen-
tation that is generally able to perform different types of
preprocessing on artificial sensor data. In this context, we are
currently working on adjusting this proof-of-concept for the
overall architecture described in Sec. V. While we first focus
on realizing a simple variant of our proposed architecture, we
plan on fully investigating the intriguing potential for future
research that is offered by this setting.
Phase Detection. In a first step, we implement and test the
identification of different process phases which is already
challenging due to fluctuations in the signals. Thus, we will
investigate which state identification variants are possible and
reasonable for deployment on networking hardware. Available
options range from simple threshold-based variants to vari-
ants directly considering the fluctuations between consecutive
strokes. We compare the different options using a data set
containing over 40 000 individual fine-blanking strokes.
Impact Of Preprocessing. In a second step, we investigate the
implications of different filtering and preprocessing techniques
on subsequent analysis methods that involve complex feature
engineering and machine learning pipelines. To this end, we
plan to specifically evaluate whether decisions to sub-sample
or drop sensor data made by our platform negatively influence
existing monitoring approaches. Improved understanding of
the interaction between the preprocessing and the analysis will
allow for devising better, custom-tailored solutions and care-
fully chosen trade-offs, e.g., accepting slightly worse analytical
accuracy for a significant reduction of the data volume. In this
context, incorporating additional signal processing steps might
be beneficial, e.g., entirely filtering out the “idle” phases before
and after each stroke or cleverly dividing one stroke in several
sub-segments with different sensor resolutions.
Quality Prediction. Going beyond the presented scope, our
design also allows us to incorporate previously unexplored



facets of the problem. For example, sensor information is often
used to predict the quality of the resulting workpiece. Includ-
ing simple quality prediction tools into our pipeline could
enable an on-demand up- and down-scaling of information
resolution depending on the expected product quality on a
stroke-to-stroke basis so that products with potential issues
could be inspected in higher detail even if they fall into an in-
control phase where our current approach would scale down
the information level.
Multi-Sensor Settings. Another property that can be utilized
is the complex correlation structure of the process force in
fine-blanking. While previously known higher correlation in
signals might hint at redundancy between sensor signals, the
auto-correlation of signals themselves can be used to remove
redundancy within the data of a signal. A complex historical
analysis of sensor signals and a deployment of this complex
correlation structure may further advance the capabilities of
switches to conduct detailed definitions on the basis of large
streaming data within the dataplane.
Takeaway. Overall, we have a fixed roadmap at hand to turn
our envisioned INC-based data processing of sensor readings
into an approach that is ready for deployment in real-world
production lines. Thus, we provide an important next step to
improve industrial processes, such as fine-blanking lines.

VII. CONCLUSION

When turning the vision of an Internet of Production into
reality, an important step is to leverage the vast amounts of
available data, e.g., to identify issues in the production process
or, more general, develop a better understanding of the process.
The presented fine-blanking line is one use case that is well-
suited for these benefits. Yet, handling the sheer amount of
data can cause problems as network access and bandwidths
of companies are often too limited. To still benefit from the
available data and information, we thus propose to scale and
preprocess the data based on the different process phases of
our fine-blanking line. Using In-Network Computing, we can
detect these phases on the data path and subsequently perform
a timely preprocessing on a sub-signal level.

Our outlined roadmap to realize the introduced approach
allows us to turn these envisioned benefits into reality. Using
a rich dataset of real-world fine-blanking process data, we will
evaluate its effectiveness in real-world settings. Specifically,
we will investigate (i) different techniques to robustly detect
the process phases, (ii) the implications of our filtering and
preprocessing on subsequent analysis pipelines, (iii) additional
facets of the problem, such as quality prediction, that might be
addressable using our approach, and (iv) the extension of the
pipeline to multiple synchronous and asynchronous sensors.

Overall, we demonstrate that deploying In-Network Com-
puting in industrial settings for filtering and preprocessing
tasks is feasible and that it has the potential of enabling
previously infeasible data analysis techniques while protecting
the local networks from overloading.

ACKNOWLEDGMENT

Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy – EXC-2023 Internet of Production – 390621612.

REFERENCES

[1] E. Sisinni et al., “Industrial Internet of Things: Challenges, Opportuni-
ties, and Directions,” IEEE TII, vol. 14, no. 11, pp. 4724–4734, 2018.

[2] H. Lasi et al., “Industry 4.0,” BISE, vol. 6, no. 4, pp. 239–242, 2014.
[3] J. Pennekamp et al., “Towards an Infrastructure Enabling the Internet of

Production,” in IEEE ICPS, 2019, pp. 31–37.
[4] S. Verma et al., “A Survey on Network Methodologies for Real-Time

Analytics of Massive IoT Data and Open Research Issues,” IEEE
COMST, vol. 19, no. 3, pp. 1457–1477, 2017.

[5] A. Feldmann et al., “Enabling Wide Area Data Analytics with Collabo-
rative Distributed Processing Pipelines (CDPPs),” in IEEE ICDCS, 2017,
pp. 1915–1918.

[6] R. Glebke et al., “A Case for Integrated Data Processing in Large-Scale
Cyber-Physical Systems,” in HICSS, 2019, pp. 7252–7261.

[7] F. Klocke, Manufacturing Processes 4: Forming. Springer Science &
Business Media, 2014.

[8] T. Bergs et al., “Punch-to-Punch Variations in Stamping Processes,” in
IEEE SAMI, 2020, pp. 213–218.

[9] B. Voss et al., “Using stamping punch force variation for the identifica-
tion of changes in lubrication and wear mechanism,” in J. Phys. Conf.
Ser., vol. 896, no. 1, 2017, p. 012028.

[10] J. Havinga et al., “Estimating Product-to-product Variations in Metal
Forming using Force Measurements,” in AIP Conference Proceeding,
vol. 1896, no. 1, 2017, p. 070002.

[11] A. Bassiuny et al., “Fault diagnosis of stamping process based on
empirical mode decomposition and learning vector quantization,” Int.
J. Mach. Tools Manuf., vol. 47, no. 15, pp. 2298–2306, 2007.

[12] P. Niemietz et al., “Stamping Process Modelling in an Internet of
Production,” Procedia Manufacturing, vol. 49, pp. 61–68, 2020.

[13] S. Zhou et al., “An SPC Monitoring System for Cycle-Based Waveform
Signals Using Haar Transform,” IEEE T-ASE, vol. 3, no. 1, pp. 60–72,
2006.

[14] J. Lipp et al., “When to Collect What? Optimizing Data Load via
Process-driven Data Collection.” in ICEIS, 2020, pp. 220–225.

[15] Q. Qi et al., “A Smart Manufacturing Service System Based on Edge
Computing, Fog Computing, and Cloud Computing,” IEEE Access,
vol. 7, pp. 86 769–86 777, 2019.

[16] P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors,” ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87–95, 2014.

[17] p4language, “Behavioral model (bmv2),” 2021. [Online]. Available:
https://github.com/p4lang/behavioral-model

[18] Netronome, “Agilio CX SmartNICs,” 2021. [Online]. Available:
https://www.netronome.com/products/agilio-cx

[19] Intel, “Intel® Tofino™,” 2021. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html

[20] I. Kunze et al., “Tofino + P4: A Strong Compound for AQM on High-
Speed Networks?” in IFIP/IEEE IM, 2021.

[21] N. K. Sharma et al., “Evaluating the Power of Flexible Packet Processing
for Network Resource Allocation,” in USENIX NSDI, 2017, pp. 67–82.

[22] R. Ben-Basat et al., “Efficient Measurement on Programmable Switches
Using Probabilistic Recirculation,” in IEEE ICNP, 2018, pp. 313–323.

[23] J. Rüth et al., “Towards In-Network Industrial Feedback Control,” in
ACM NetCompute, 2018, pp. 14–19.

[24] R. Glebke et al., “Towards Executing Computer Vision Functionality on
Programmable Network Devices,” in ACM ENCP, 2019, pp. 15–20.

[25] F. Cesen et al., “Towards Low Latency Industrial Robot Control in
Programmable Data Planes,” in IEEE NetSoft, 2020, pp. 165–169.

[26] A. Sapio et al., “In-Network Computation is a Dumb Idea Whose Time
Has Come,” in ACM HotNets, 2017, pp. 150–156.

[27] I. Kunze, “Investigating the Applicability of In-Network Computing to
Industrial Scenarios,” in IEEE ICPS, 2021.

[28] Y. Chen et al., “Density-Based Clustering for Real-Time Stream Data,”
in ACM SIGKDD, 2007, p. 133–142.

https://github.com/p4lang/behavioral-model
https://www.netronome.com/products/agilio-cx
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

	Introduction
	Seasonal Patterns in Fine-blanking
	Related Work in Industrial Data Processing
	Recent Advances In In-Network Computing
	Detecting Sensor Signals In The Network
	Process Phases And Information Levels
	Architecture
	Aggregate
	Classify
	Decide

	Limitations

	Towards Deployment in Industrial Production Lines
	Conclusion
	References

