X et al. (Hrsg.): 19th Symposium for Database Systems for Business, Technology and Web,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2021 1

FactStack: Interoperable Data Management and
Preservation for the Web and Industry 4.0

Lars Gleim/! Jan Pennekamp,2 Liam Tirpitz,1 Sascha Welten! Florian Brillowski>
Stefan Decker!*

Abstract:

Data exchange throughout the supply chain is essential for the agile and adaptive manufacturing
processes of Industry 4.0. As companies employ numerous, frequently mutually incompatible data
management and preservation approaches, interorganizational data sharing and reuse regularly requires
human interaction and is thus associated with high overhead costs. An interoperable system, supporting
the unified management, preservation, and exchange of data across organizational boundaries is
missing to date. We propose FactStack, a unified approach to data management and preservation based
upon a novel combination of existing Web-standards and tightly integrated with the HTTP protocol
itself. Based on the FactDAG model, FactStack guides and supports the full data lifecycle in a FAIR
and interoperable manner, independent of individual software solutions and backward-compatible with
existing resource oriented architectures. We describe our reference implementation of the approach and
evaluate its performance, showcasing scalability even to high-throughput applications. We analyze the
system’s applicability to industry using a representative real-world use case in aircraft manufacturing
based on principal requirements identified in prior work. We conclude that FactStack fulfills all
requirements and provides a promising solution for the on-demand integration of persistence and
provenance into existing resource-oriented architectures, facilitating data management and preservation
for the agile and interorganizational manufacturing processes of Industry 4.0. Through its open-source
distribution, it is readily available for adoption by the community, paving the way for improved utility
and usability of data management and preservation in digital manufacturing and supply chains.

Keywords: Web Technologies; Data Management; Memento; Persistence; PID; Industry 4.0

1 Introduction

While the management and preservation of manufacturing data regularly play a crucial
role to fulfill legal and contractual accountability requirements, today’s industrial data
management is frequently considered an overhead factor instead of a valuable tool for data
reuse, e.g., in the context of process optimization. While many aspects of data reuse have

1 Databases and Information Systems, RWTH Aachen University, Germany - gleim @dbis.rwth-aachen.de
2 Communication and Distributed Systems, RWTH Aachen University, Germany

3 Institute of Textile Technology, RWTH Aachen University, Germany

4 Fraunhofer FIT, Sankt Augustin, Germany

E@®® doi:10.18420/btw2021-20

Authors’ version of a manuscript that was accepted for publication in Lecture Notes in Informatics (LNI) as part
of the Symposium for Database Systems for Business, Technology and Web (BTW ’21). Changes may have been
made to this work since it was submitted for publication. Please cite the published version. The final authenticated
version is available online at https://doi.org/10.18420/btw2021-20

© 2021. This manuscript version is made available under the CC BY-NC 3.0 license:
https://creativecommons.org/licenses/by-nc/3.0/

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/btw2021-20
https://doi.org/10.18420/btw2021-20
https://creativecommons.org/licenses/by-nc/3.0/
gleim@dbis.rwth-aachen.de

2 Gleim et al.

been studied in prior work [G120b; Kal7; LGD20], low-overhead data management solutions
for industry are missing to date [Pe19b]. In the following, we introduce a representative use
case scenario in the aerospace domain to motivate the remainder of the paper.

Data Management and Preservation for Aircraft Manufacturing. The manufacturing
of parts in the aerospace industry has strict certification requirements throughout the
manufacturing process and supply chain, requiring detailed data about each process step
to be collected, validated, and archived for years. For example, US-American regulations
require the secure storage of rype design case files, comprising drawings and specifications,
information about dimensions, materials, and processes, for more than 100 years [Fe06].
Such strict requirements make sophisticated data management and preservation systems
indispensable. At the same time, managing data in compliance with such regulations
is traditionally associated with significant costs due to overheads incurred e.g., through
manual data handling and inspection processes [Pol7]. Considering a modern aircraft
manufacturing supply chain, massive amounts of production data need to be managed and
preserved [Pel9c], involving human paper-based signature mechanisms and leading to high
associated overhead costs. In contrast, the efficient digital collection, management, exchange,
and preservation of this data could lead to significant cost savings and productivity gains as
part of Industry 4.0, not only in aviation but in many industries producing safety-critical
components or otherwise facing strict certification and data retention requirements (e.g.,
textile, food processing, or plastics industry).

Use Case Scenario. Especially the manufacturing of structural elements in the aerospace
industry relies on a large variety of technical textiles, such as light-weight, yet stiff
carbon-fiber-reinforced plastics. We consider a common and simple aerospace scenario as
illustrated in Fig. 1. Manufacturer A produces a light-weight carbon-fiber wing profile R-001,
manufacturer B produces airscrew PX9, both collecting manufacturing process information
along the process. Manufacturer C assembles an airplane A1-001, employing wing profile
R-001 sourced from A and airscrew PX9, sourced from B. C further conducts regular
maintenance work on airplane A1-001 throughout its lifetime, collecting corresponding
maintenance data throughout its lifetime. Although material and workpiece identifiers
within individual companies are usually standardized and production process data are often
collected locally, individual resources are typically allocated to a specific cost center within
the company’s management and ERP system and cannot be easily linked to information in
external systems, e.g., about which product, workpiece, or application may have been used
during the manufacturing process. When, e.g., C buys R-001 from A, existing manufacturing
data, such as collected by A during the production process, is seldomly or only insufficiently
passed on. Additionally, data collected during later stages of the product lifecycle, such as
the maintenance data collected by C, is typically not passed back throughout the supply
chain although it may serve as a valuable tool, e.g., in the context of wear and fatigue
analysis of parts and products. Today, especially product quality data is mostly shared on
paper and typically discarded after respective quality checks have been passed. Additionally,
the quality of fiber-reinforced products is typically controlled only after post-processing

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 3

............... > —>
Physical s I e > E — M S

Nz
v,‘@;/&//
W7
pre
v A
- - Secure Storage

Data Store N— N

=~
N’
Data Flow .
: v —_
i =

(30+ Years)

Used for Audits
and Production

Fig. 1: Aerospace use case scenario: Manufacturer A produces wing profile R-001 and
Manufacturer B airscrew PX9. Both collect quality data as part of their respective certification
requirements during the process. Manufacturer C acquires the parts, employing them in
the manufacturing of plane A1-001, keeps all related certification data and maintenance
records in secure storage for 30+ years to comply with legal regulations.

is finished and changes are no longer possible [Me12]. A product is then either certified
for the intended application during quality control or scrapped, while it may be perfectly
reusable for other subsequent applications.

Similar scenarios can be described for other domains in industry [Dal19; Ni20; Pe19c; Pe20a;
Pe20b]: Today, the collection, exchange, and preservation of data is frequently limited by the
overhead cost of this data management (or fears of a loss of control over valuable data) while
exactly the same data could be used for subsequent manufacturing process optimizations.
Thus, an interoperable and principled data management and preservation system is needed
to reduce data management overheads and therefore the associated costs and risks.

Principal Requirements. Data management and preservation for Industry 4.0 must enable
the integration, exchange, and preservation of a wide variety of different types of data from
all kinds of information systems employed throughout both the automation pyramid and the
product lifecycle. Building upon the FAIR principles [Wil6] of scientific data management,
an implementation should notably ensure that data is findable, accessible, interoperable,
and reusable. Recent work has argued that these principles are equally applicable for data
exchange throughout the supply chain and in Industry 4.0 [G120c]. For the realization
of these principles, a number of specific services that need to be provided by any data
management solution have been identified in prior work [GD20a; G120c; Hu00; Wil6],
notably including:

1. identification, enabling globally unique and reliable referencing and citation of
resources,
2. versioning, ensuring the immutability of individual resource revisions to avoid

4 Gleim et al.

references from becoming incorrect due to content changes and enable change
monitoring and state synchronization,

3. persistence, allowing individual resource revisions to be archived and persistently
identified through so-called persistent identifiers (PIDs),

4. an access mechanism for resource retrieval and modification which should be open,

free, and universally implementable,

discovery mechanisms, to make resources, metadata, and archives findable, and

6. accurate metadata, to ensure interoperability and reusability through clear semantics,
e.g., by keeping track of data provenance, i.e., information about data origins,
influences, and evolution over time.

e

To address these requirements, Gleim et al. [G120c] recently proposed the FactDAG data
interoperability model, for which we present a suitable implementation in this paper.
Importantly, this implementation should further: provide the identified services in a
manner that ensures backward-compatibility with existing resource oriented infrastructure
and patterns as far as possible, be optionally adoptable, provide interoperability across
software vendors and domains, employ non-proprietary, free, universally implementable
and established standards whenever possible, and incur low overheads—both technical
and otherwise—to support sustainability.

Contributions. To provide this implementation, we propose FactStack, an interoperable
approach to data management and preservation based upon a novel combination of ex-
isting Web standards and tightly integrated with the HTTP protocol itself. Thereby, we
directly realize the FactDAG data interoperability layer model, which we proposed in prior
work [G120a; G120c], in a FAIR and interoperable manner, independent of individual
software solutions and backward-compatible with existing resource oriented architectures.
FactStack digitally supports data management throughout the full data lifecycle [Bal2;
Co19] and directly integrates data management into the technology stack of the Web, instead
of just using HTTP as an access mechanism. We further provide an open-source reference
implementation of this approach, paving the way for its rapid adoption by the community
and, subsequently, the proliferation of best practices for data management and preservation
in digital manufacturing and supply chains. We demonstrate the scalability of the system to
high-throughput applications and qualitatively highlight its applicability to industry using a
real-world use case in the aerospace domain.

Paper Organization. The remainder of this paper is structured as follows. Sect. 2 provides
an overview of related work and fundamental technologies. Sect. 3 conceptualizes our data
management and preservation system, based upon open and standardized Web technologies.
Sect. 4 then describes FactStack, our open-source implementation of this system, and
evaluates its performance, before we discuss the impact of the proposed solution for data
management and preservation in Sect. 5. Finally, we conclude our work in Sect. 6.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 5

2 Related Work and Foundational Web Technologies

As related and foundational work, we first introduce existing data management solutions and
the specific data characteristics and infrastructure requirements in the context of Industry
4.0. We then detail how Web technologies and standards provide fundamental primitives
and building blocks for the realization of interoperable data management. We discuss
essential aspects of interorganizational interoperability and outline the role and importance
of provenance information for reliable data reuse. Finally, we summarize the FactDAG
data interoperability layer model [G120c] as the theoretical foundation of our practical data
management solution.

The authors further conclude, that existing systems are typically lacking semantic enrichment
of data, e.g., using Semantic Web technologies [BHLO1], which allows for them to be
shared and reused across application, enterprise, and community boundaries, and enables
the creation of machine-actionable knowledge. Based on their success in the realization
of scalable, interoperable, and extensible enterprise solutions [B113], Web technologies
are already integral components of many existing data management systems (such as the
aforementioned). In combination with Semantic Web technologies, they provide a promising
basis for the development of interoperable and sustainable data management solutions for
Industry 4.0 and the Web [GD20a].

Web Technologies for Interoperability. Interoperability in the Web is based on a number of
fundamental standards, notably including: the global Domain Name System (DNS) [Mo87],
the HTTP protocol and its implementation of the Representational State Transfer (REST)
architectural pattern [Fi00], the Uniform Resource Identifier (URI), as well as its directly
resolvable incarnation, the Uniform Resource Locator (URL) [BFMOS5]. Building on top
of these foundations, Linked Data and the Semantic Web enable data interoperability on
the Web. Using the Resource Description Framework (RDF) [WLC14] data model and its
serializations and enable machine-to-machine data interchange, the semantic enrichment
of data, and the ability to interlink data across organizational boundaries. Deploying these
standards supports interoperability. Notable standardized extensions of the basic HTTP
protocol for distributed data exchange and management on the Web include (i) the Linked
Data Platform (LDP) standard [SAM15], and (ii) the HTTP Memento protocol [VNS13]. The
Linked Data Platform defines how Linked Data resources can be read and written using
HTTP REST methods, i.e., HTTP GET, POST, PUT, PATCH, and DELETE. Besides resource
access, the LDP enables the creation of containers that can be used to organize resources
and to express relationships between them. Thus, it enables simplified resource discovery,
as well as providing a mechanism to provide a dedicated metadata record for arbitrary Web
resources using the HTTP rel="describedby" Link header. Using the LDP protocol,
Linked Data and Web resources can be managed similarly to regular files in a local file
system while enabling the augmentation of arbitrary resources with semantic metadata.
A detailed introduction to the LDP can be found in [SAM15]. The Memento protocol
introduces a mechanism to manage and retrieve persistent versions of Web resources by
using timestamps as a resource version indicator and access key. Resource versions may be

6 Gleim et al.

redundantly stored on multiple servers and managed independently of each other, enabling
sustainable and distributed resource archiving [VNS13]. The Memento protocol provides
primitives to address resource versioning, persistence, access, and discovery. As such,
prior work already suggested the Memento protocol as a promising candidate for the
implementation and standardization of data management and preservation systems [GD20a;
Val4; Val8]. A detailed overview of the Memento protocol is provided in [VNS13].

Interorganizational Interoperability. An important factor limiting the adoption of interor-
ganizational data exchange is uncertainty about the reliability of data, accountability, and
liability questions for damages incurred by inaccurate data [Pe19a]. To this end, the concept
of data provenance plays an important role in the realization of trust, accountability, and
better interpretability of data and the processes that lead to their creation in collaborative
manufacturing and supply chain systems. The term provenance, sometimes also called data
lineage, refers to metadata regarding the formation history, origins, and influences that
impacted the state of individual data. An open and extensible standard for provenance data
is the W3C PROV data model (PROV-DM) for provenance interchange on the Web [MM13].
A primer on this model and its primitives can be found in [Gil3]. Provenance records
are, e.g., successfully employed to build and analyze scientific workflows through process
mining [Ze11], to ensure the reproducibility of such workflows [Ko10], to establish trust
across heterogeneous sources of data [LLM10] and to further data reuse [Yul8]. Provenance
data is special, in the sense that it is metadata that is relevant and collectible for practically
any kind of resources and directly relates to the data authoring and management process. As
such, it may serve as a generic kind of interoperable ‘glue’, relating resources throughout
their formation history.

FactDAG Model. The conceptual FuctDAG data interoperability model proposed by Gleim
et al. [G120c] similarly employs data provenance to interlink resources and data throughout
supply chain processes and in Industry 4.0. By using a persistent identification mechanism
called FactID, FactDAG simultaneously addresses the requirements of identification,
versioning, and persistence, constructing persistent identifiers from unique triples of
global authority ID, internal resource ID and respective revision ID of a given immutable
resource revision, also referred to as a Fact. The model further employs Authorities,
entities (e.g., companies or organizations) that are responsible for Facts, Processes, which
describe prototypical interactions with Facts, and ProcessExecutions, which refer to their
instantiations and are introduced to capture individual influences and results (i.e., newly
created Facts or Fact revisions). Additionally, a single relation (called influence, oriented
forward in time) is used to express provenance relations between the elements of the FactDAG,
thus constructing a provenance-based, directed acyclic graph of Facts, the FactDAG. Thus,
the model allows tracing back the origins of Facts throughout time, revealing the resources,
authorities, and processes involved in its conception and throughout the data management
process. By globally and persistently identifying immutable revisions of resources, the
model allows for information to be reliably referenced in global collaboration scenarios.
The deep incorporation of provenance information into the model provides companies

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 7

Validation Create, Process Identification
Cleanup & Analyze Provenance
Integration / \ Metadata

Curate & Manage &

Capture Data Preserve

Lifecycle
i i Versioning
Access Licensing o
Retrieval Terms & Conditions | ersistence
Attribution Other Metadata ntegrity

Compliance

Discover Release

& Reuse & Publish

Fig. 2: The data management lifecycle consists of five steps providing an abstract model for
data management processes, both in industry and academia. Adapted from [Bal2; Co19].

with a solid base of relevant metadata for the establishment of accountable, reliable, and
sustainable data integration, even in interorganizational scenarios. For additional details, we
refer to the specification of the FactDAG model [GI20c].

While we believe that the abstract FactDAG model provides a promising basis for the
implementation of a data management and preservation system for Industry 4.0, it lacks
both a concrete implementation, as well as a principled integration with best practices of
data management to date. Thus, we propose a concrete implementation concept based on
the fundamental data management lifecycle in the following section.

3 A Concept for Interoperable Data Management and Preservation

Data represent corporate assets with potential value beyond any immediate use, and therefore
need to be accounted for and properly managed throughout their lifecycle [Fal4]. Various
data lifecycle models [Bal2; Co19] have been proposed in recent years to serve as a high-
level guideline for the data management process—from conception through preservation
and sharing—to illustrate how data management activities relate to processes and workflows,
to assist with understanding the expectations of proper data management and to ensure that
data products will be well-described, preserved, accessible, and fit for reuse. The recurring
elements of such models can be summarized in a five-step data management lifecycle model
as illustrated in Fig. 2, consisting of the steps: (i) creation, processing, modification, and
analysis, (ii) metadata management and data preservation, (iii) release and publishing of
data, including proper licensing, documentation, etc., (iv) discovery for reuse of available

8 Gleim et al.

data, and (v) the retrieval, curation, and capture of this data for subsequent processing.
In the following, we consistently refer to these steps using the names provided in Fig. 2.
Traditionally, data management infrastructure is mainly employed as a kind of mediating
service between the Release & Publish and the Discover & Reuse phase of the data lifecycle,
while the remaining steps are carried out independently by human actors. In contrast, we
aim to support the full data lifecycle process, integrating it directly with the fundamental
infrastructure of the Web.

Technical Approach. Based on the principles of the FactDAG model [G120c], we strive to
realize an interoperable data management and preservation system for usage throughout the
data management lifecycle, the product lifecycle and the full supply chain, which satisfies
the requirements identified in Sect. 1. As already motivated in Sect. 2, this system should
build upon existing open Web standards whenever possible, ensuring compatibility and
interoperability with existing systems and deployed solutions, as well as profiting from
an ecosystem of developers with corresponding proficiency [St20] and the wide variety
of available authentication and authorization mechanisms [TCS18]. The implementation
should allow for incremental adoption, enabling the management and preservation of
existing data according to the principles of the FactDAG model in an ad-hoc, on-demand
fashion. Additionally, it should be backward-compatible, allowing clients that have no use
for, do not support, or are unaware of data management principles in general, to simply
ignore all related additional information. Provenance data should be collected and processed
automatically whenever possible, especially during the Curate & Capture and Manage &
Preserve phases, to minimize the amount of explicit markup and metadata management
required and prevent easily avoidable user errors.

For the realization of these goals, we build upon two recent proposals by Gleim et al.: a PID
system employing dated URIs in conjunction with a resolution mechanism based on the
HTTP Memento protocol [GD20b] (addressing aspects of data identification, versioning,
persistence, and access), as well as an alignment of FactDAG provenance with the W3C
PROV standard for provenance information [G120d] (addressing aspects of data provenance
and discovery). In the following, we outline and extend upon these proposals, integrating
them with the W3C Linked Data Platform and other Web standards to form a comprehensive
data management solution, addressing all requirements as formulated in Sect. 1.

3.1 FactID: Time-based Persistent Data Identification

To fulfill the identification, versioning, and persistence requirements as defined in Sect. 1
within the FactDAG model, a suitable persistent resource identification mechanism for the
implementation of the FactID scheme is needed. As mentioned in Sect. 2, a FactID consists
of the three components authority, internal resource ID and revision identifier. Inspired
by the original FactID proposal [G120c], we map all three components to a single URI to
enable backward-compatibility with the Web infrastructure, as follows:

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 9

Authority auth. All data in the FactDAG model is placed under the exclusive and authorita-
tive control of an organizational body, as identified by its global (but not persistent) authority
ID auth € Authority. We map Authority to the set of all DNS domain names [Mo87].

Internal ID i1D. All resources available under the control of auth are identified by their
respective internal resource ID iID € . We map P to the set of all URI Paths [BFMO05]
(including query and fragment suffixes). Combining auth and i1ID in a tuple creates a
global (but not persistent) resource identifier, which we practically materialize as traditional
HTTP URLSs of the form http://auth/ilID.

Revision ID 7. Individual resource revisions are further identified by their respective revision
IDT € 7.Wemap 7 to the set of all RFC3339 [NKO02] arbitrary precision UTC timestamps.
While other revision identification mechanisms (such as content hashing) are conceivable,
we specifically employ UTC timestamps due to their globally agreed-upon semantics.
Timestamps are further unaffected by content-variations (e.g., due to content-negotiation)
and allow for the intuitive ordering of resource revisions and their direct interpretation
as time series data. Subsequently, the triple (auth,ilID,) € Authority X P X T yields a
persistent global identifier — a FactID — for the immutable state (i.e., revision) of the resource
identified by the tuple (auth,iID) at the point in time 7. We employ the term Fact to refer
to this immutable data state.

FactID URI Scheme. Many PID approaches require the assignment, registration, and
management of PIDs outside of the Web infrastructure and already existing URL identifiers.
This causes overhead for identifier mapping and discovery [Val4]. Thus, Gleim et al. [GD20b]
proposed a system capable of reusing existing URLs as PIDs by combining dated URIs
(for identification) with an HTTP Memento-inspired resolution mechanism (for versioning
and persistence). We employ this approach to realize a URI scheme for FactID through the
following mapping:

While it is possible and common practice to resolve specific resource versions through
URLSs including HTTP query parameters, such an approach is hard to standardize in a
backward-compatible manner. While a URL of e.g., the form http://auth/ilD/?v=1
may be employed to uniformly express a persistent identifier according to the semantics
of the FactID, the query parameter v is likely already used with different semantics in
other contexts, creating the potential for naming conflicts. To avoid this problem, we
adapt Larry Masinter’s ‘duri:’ dated URI proposal [Mal2] for the identification of
specific resource revisions, resulting in the ‘factid:’ URI scheme: A FactID of the form
factid:t:http://auth/iID persistently identifies the immutable state of the resource
http://auth/ilD at the point in time 7, also referred to as a Fact or Memento. We refer
the interested reader to Masinter’s RFC proposal [Mal2] for an additional discussion of the
benefits and implications of employing dated URL.

HTTP-based Data Retrieval. To materialize and implement a practical resolution mecha-
nism for such a FactID, we employ the HTTP Memento protocol as an access mechanism.

10 Gleim et al.

Persisting Resources Memento Retrieval

URL Reneval

HTTP GET :
P o tiD [R -
= Accept-Datetime: [Tl E
Persistent >

Retrieval Identification Archiving FactID Resolution

Fig. 3: Persisting and retrieving data using FactID. A FactID uniquely identifies a Fact (i.e.,
an immutable resource revision) by combining its URL with a timestamp. Such a FactID
can be used to retrieve that Fact via the Memento protocol. Adapted from [GD20b].

Given a fixed ID, the resolution function res : Authority X P X 7~ — Fact (with Fact as the
set of all Facts) retrieves the Fact f identified by a given FactID through HTTP datetime
negotiation via the HTTP Memento protocol [VNS13]. To maintain backward-compatibility,
res defaults to resolving the current state of the resource identified by the tuple (auth,ilID),
i.e., the URL http://auth/iID, if no revision ID is provided. The current resource state,
as resolved via HTTP, may be lifted to a Fact by a consumer through incorporating the
current timestamp as revision ID, as outlined in the original Fact construction procedure
in [G120c] and illustrated in the left half of Fig. 3. This way, it is possible to enable
the on-demand incorporation of persistence into existing systems implementing REST
semantics. Given such a factid, the original resource state may then be retrieved from an
archive through an HTTP GET request employing the Memento Accept-Datet ime header
with the Memento’s creation time as specified in the 7 part of the factid as depicted in
the right half of Fig. 3. An overview of the different retrieval patterns and further features
supported by the Memento protocol is given in [VNS13].

Data Persistence. As postulated by Kunze and Bermes [KB19], persistence (and analogously
immutability) is purely a matter of service. It is neither inherent in an object nor conferred
on it by a particular naming syntax but only achieved through a provider’s successful
stewardship of resources and their identifiers. Since the architecture of the HTTP Memento
protocol “is fully distributed in the sense that resource versions may reside on multiple
servers, and that any such server is likely only aware of the versions it holds” [VNS13],
the service of data persistence may subsequently be provided by the authoritative data
source, by any data consumer, by third parties such as governmental institutions or archiving
providers or any number thereof, as long as volitional and legally permitted. By allowing
for the discovery and retrieval of immutable data revisions over time, the Memento protocol
further enables state synchronization between storage and archive locations as the data
changes over time, thus additionally supporting redundant storage, e.g., for long-term data
preservation. A detailed discussion of these applications may be found in [GD20b].

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 11

Organization (o.n) wasAttributedTo (1,1) Entity (0,1) -
Authority Fuct wasRevisionOf
\ (0,n)

(0.n) ©,n) (1,1)
actedOnBehalfOf used wasGeneratedBy
(1,1) (0.n) (0,n)
Agent \ _ (0n) wasAssociatedWith (1,7) Activity
Process ProcessExecution

Fig. 4: The elements of the FactDAG model (in italic) and their provenance relations
expressed using PROV-O primitives with corresponding (min,max)-cardinalities [Ab74].
The shapes represent the PROV core classes Entity, Activity, and Agent (with Organization as
a subtype), respectively. Adapted from [G120d].

3.2 Automated Provenance Annotation and Distribution

As already discussed in Sect. 2, provenance is a particularly important category of metadata
for data management. In alignment with the principal requirements identified in Sect. 1, we
strive to minimize the metadata management overhead, by collecting provenance information
automatically whenever possible. To ensure interoperability with existing tooling and reuse
existing standards, we employ the recently proposed alignment [G120d] of FactDAG
provenance to the W3C PROV-O ontology standard [LSM13]. The mapping, illustrated in
Fig. 4, thus allows for the expression of FactDAG provenance information as RDF metadata.
For any given Fact f with FactID fID = (auth,ilD, 7), the following provenance relation
may be directly derived:

— fis an instance of the prov:Entity class.

— auth is an instance of the prov:0Organization class.

— fisprov:wasAttributedTo its authoritative source auth.

— If f is a direct revision of predecessor Fact f’, then f prov:wasRevisionOf f’.

— fisaprov:specializationOf its respective original resource, identified by the
URL derived from the tuple (auth,ilD).

Additionally, information about any prov:Entity which was prov:used or
prov:wasGeneratedBy a given prov:Activity may be automatically collected
through the usage of a runtime library for Fact management, which we detail in Sect. 4.
Nevertheless, further metadata and provenance information may have to be collected
manually and can be added using RDF-compatible metadata vocabularies or other
domain-specific ontologies, following the FAIR principle that metadata shall use a formal,
accessible, shared, and broadly applicable language for knowledge representation and be
described with a plurality of accurate and relevant attributes [Wil6].

12 Gleim et al.

Metadata RDF PROV Standard
[Discovery | {hec Deta
Platform HTTP

Access Memento

|

‘ Persistence Protocol
‘ Versioning

P Dated URIs
‘ Identification URI

Fig. 5: The novel combination of existing protocols and Web standards provides a unified
data management solution, addressing all principal requirements identified in Sect. 1.

3.3 Fact Discovery and Creation

The final missing conceptual component is a standardized discovery and read/write mecha-
nism for data resource management. Due to its potential for interoperability with existing
HTTP REST APIs and conceptual simplicity, we implement the Linked Data Platform
specification [SAM15] for this task. Thus, resources (as identified by their respective HTTP
URLs of the form http://auth/iID) can be organized in a hierarchy of LDP Containers
within their authoritative source auth, enabling for resource discovery within it through
exploration. In contrast, resource creation and modification are handled through the specified
LDP HTTP REST methods.

To support a wide variety of structured, semi-structured, or unstructured data formats,
including binary blobs of arbitrary file-type, the LDP specification further provides the
option to augment Non-RDF LDP resources with a respective RDF metadata resource,
linked through the HTTP rel="describedby" Link header, which we employ in practice,
to store provenance information and further metadata. Both data and metadata can then be
discovered through one single URL (or FactID respectively) and retrieved via HTTP.

Overall Concept. By combining dated URIs, the HTTP Memento protocol and the
Linked Data Platform standard with PROV-O provenance and extensible RDF metadata,
we ultimately propose a concept for semantic data management directly based on core
technologies of the Web—URI, HTTP, and RDF—as illustrated in Fig. 5. By considering
resource versioning and persistence as additional service layers of the basic Web technology
stack and implementing them as extensions of URI and HTTP, we ensure backward-
compatibility and interoperability with existing resources on the Web. By reusing existing
standards where possible, and enabling on-demand resource versioning and persistence
through consumers and third parties, the concept effectively addresses all requirements
identified in Sect. 1, providing a promising foundation for its long-term sustainability.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 13

Based on this concept, we present our reference implementation of an interoperable data
management and preservation solution for the Web and Industry 4.0.

4 FactStack: A Concrete Realization of the FactDAG Model

Following the conceptual approach presented in Sect. 3, we realize FactStack as a concrete
open-source implementation of the FactDAG model for interoperable data management
and preservation. Based upon the basic REST paradigm at the core of the Web, FactStack
employs standardized and open Web technologies to provide a uniform data management
API for arbitrary data resources on the Web, while enabling persistent data preservation
through the HTTP Memento protocol.

Our realization consists of three open-source components, available for practical usage: A
server component!, adapted from the Trellis LDP project and implementing the LDP and
Memento protocols for data storage and management, a JavaScript client library? simplifying
both the interaction with the LDP server and the management of data provenance, as well as
an optional broker, which enables real-time subscriptions to changes of LDP resources, i.e.,
newly created data revisions.

Data Storage. For the realization of a Fact authority, we employ a data storage server! based
on the LDP implementation of the Trellis open-source project3. Trellis provides both direct
integrations with a number of freely available storage backends, as well as the ability to
integrate with existing information systems as its data store. The project further implements
the HTTP Memento protocol [VNS13] for resource versioning, which we adapted to support
RFC3339 [NKO02] timestamps with up to nanosecond precision, as per the recent proposal
of Gleim et al. [GD20b]. By default, all resources are identified by traditional URLSs of the
form http://auth/iID, their Mementos by corresponding FactIDs and revisions managed
through the Memento protocol. To enable backward-compatible linking to Facts with
standard URLSs and resolution over plain HTTP, the server assigns an additional unique
Memento URL URL-M (cf. [VNS13]) of the form http://auth/ilID/?v=1 to each Fact.
Finally, we implemented Memento headers to also be returned in response to LDP PUT
and POST requests, as proposed by [GD20b], avoiding race conditions between competing
resource updates and Memento header retrieval, thus ensuring efficient atomic resource
updates.

Data Management. To guide the data management process in client applications, the
FactLib.js library? mirrors the data lifecycle (cf. Fig. 2) in code. Facts are retrieved or
created within the context of an activity and are subsequently registered as used, respectively
generated by this activity, i.e., automatically recorded as corresponding provenance links.
The library further handles the transparent and unified retrieval and creation of both RDF

1 Available at: https://git.rwth-aachen.de/i5/factdag/trellis
2 Available at: https://git.rwth-aachen.de/i5/factdag/factlibijs
3https://www.trellisldp.org/

https://git.rwth-aachen.de/i5/factdag/trellis
https://git.rwth-aachen.de/i5/factdag/factlibjs
https://www.trellisldp.org/

14 Gleim et al.

and Non-RDF Facts and their respective metadata, as well as automatically adding collected
and inferred provenance information (cf. Sect. 3.2) as RDF metadata using the W3C PROV
standard. For RDF resources, the provenance information is directly part of the resource
stored in the LDP and can be found and retrieved by all clients that resolve the FactID
to that resource. For binary resources, the Factlib.js library automatically discovers and
manages metadata through the HTTP rel="describedby" Link header (cf. Sect. 3.3),
retrieves it via HTTP and delivers it to the client application as part of the Fact. While
authorities only store and provide access to Facts under their own control, clients can read
and write from and to resources associated with different authorities. Clients may learn
about Facts under the control of third-party authorities, e.g., by following provenance links
(i.e., traversing the FactDAG), through explicit membership links provided by the LDP
implementation or through other generic RDF triples or links. Each authority server may
employ its own authentication and access authorization mechanisms, as well as providing its
own data licensing terms, in order to maintain control over access to its data. Once a client
successfully retrieved a resource, they may optionally (if legally allowed) archive it with any
number of external Memento archiving providers (such as their own organization’s) to serve
as long-term persistence providers for arbitrary Facts. This distributed and usage-based
archiving mechanism allows for flexible and use case driven trade-offs between persistence
guarantees and associated costs, further contributing to the long-term sustainability of the
data management approach as a whole. Retrieving Facts from third-party archives does,
however, raise associated questions regarding authenticity and integrity, which we plan to
consider in future work.

WebSocket Subscriptions. Since many applications in Industry 4.0 may profit from push-
based real-time updates of changes to resources, e.g., to react to events with low latency,
a useful, practical feature consists of subscription support. Whenever new revisions of
resources are created, a subscribed client receives a corresponding notification. Since for
any pair of authority ID and internal ID, a series of data revisions could exist over time, all
data within the FactDAG model is effectively time-series data. As such, every data point (as
identified by authority and internal ID) is a stream of Facts and processing of facts is stream
processing, which may, in turn, result in new Facts. To implement subscription support, we
employ a broker-based approach to communicating change notifications in Activity Streams
2.0 [SP17] format using a STOMP# message encoding and a WebSockets [MF11] transport.

Performance. Finally, we conduct a performance evaluation of a single-node deployment
of the server application on a workstation with Intel i7-8700K CPU, 64 GB of RAM and
NVMe SSD. We configure Trellis to store Mementos in the file system and employ a local
Apache ActiveMQ Artemis> broker to support resource subscriptions via its Stomp over
WebSockets implementation. We measure the average response time for Fact creation using
HTTP PUT requests under different loads via Apache JMeter®, as well as the average

4https://stomp.github.io/stomp-specification-1.2.html

Shttps://activemq.apache.org/components/artemis/download/release—notes—2.
14.0

6https://Jjmeter.apache.org/

https://stomp.github.io/stomp-specification-1.2.html
https://activemq.apache.org/components/artemis/download/release-notes-2.14.0
https://activemq.apache.org/components/artemis/download/release-notes-2.14.0
https://jmeter.apache.org/

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 15

—#— HTTP Response Time
—4— STOMP Notification Time

103 4

102 4

Response Time [ms]

10! 4

0 200 400 600 800 1000
Load [requests/s]

Fig. 6: Response times for random Fact creation under different loads as well as the time the
system needs to notify a subscriber of the changed data (with 99 % CI). The results indicate
sufficiently low and stable average response times for throughputs of up to 1000 insertions/s,
as well as for notifications to the subscriber for throughputs up to 600 insertions/s.

time until a change notification is received back by a subscriber which consists of a basic
collection script based on stomp.py’. To simulate random access to resources, 100 000
different resources are initially created containing five RDF triples each, as may be expected
for small resources, such as single sensor values. The local JMeter client application issues
PUT request to the server to update resources randomly chosen from this pool to apply
the desired load and only starts the measurement of the average response times after an
initial warm-up period. The stomp.py script subscribes to all resources with the ActiveMQ
broker and records the timestamps of received notifications and the associated resource. The
notification time is computed afterward, by comparing the timestamp of the request with
the recorded timestamp of the collection script. To guarantee independent measurements,
the whole system including the stored data is reset after each measurement.

The results plotted in Fig. 6 indicate a relatively stable average response time of around 10 ms
for throughputs of up to 1000 insertions per second. For a throughput up to approximately
580 requests per second, the average response time is between 6 ms and 12 ms and the
subscriber receives the notification in under 60 ms after the response confirming the
resource modification is received by the sender. Around the 600 requests per second
mark, the performance of the ActiveMQ broker deteriorates significantly, stabilizing at
a notification latency of roughly 1 s for 680 requests per second and above. We attribute
this behavior to the performance of the collector. If the collector cannot keep up with the
processing of the incoming messages, the broker performance may be significantly reduced,
as documented by the ActiveMQ project.® Therefore, the maximum achieved load does not
indicate the maximum capacity of the broker, but only the performance with regard to a

7https://github.com/jasonrbriggs/stomp.py
8 https://activemq.apache.org/components/artemis/documentation/latest/slow—
consumers.html

https://github.com/jasonrbriggs/stomp.py
https://activemq.apache.org/components/artemis/documentation/latest/slow-consumers.html
https://activemq.apache.org/components/artemis/documentation/latest/slow-consumers.html

16 Gleim et al.

single collector, which may be achieved by multiple collectors independently. In a practical
scenario, a client would not typically subscribe to all resources, but only to the subset of
those resources that are relevant to its immediate use case application. Thus, the ability
to process up to 580 change notifications per second on a single client already provides
a sufficient capacity for many practical scenarios. In order to expand the overall capacity
beyond 1000 requests per second, e.g., for scenarios with multiple data producers and high
update frequencies, users may instead profit from the horizontal scalability of Trellis LDP’s
server architecture. In future work, we further plan to evaluate the performance of different
data persistence backends and potential alternatives to Trellis for additional performance
optimization.

With FactStack, we provide a concrete, open-source implementation of the FactDAG model
for interoperable data management and preservation, facilitating the rapid adoption and
evaluation by the community. After demonstrating the system’s scalability to high data-
throughput scenarios, we discern its practical value for data management in Industry 4.0 in
the following.

5 Applying the FactStack to Data Management in Industry 4.0

To ascertain FactStack’s value for practical application scenarios, we illustrate its data and
control flow by mapping it to the research data management lifecycle presented in Fig. 2,
resulting in the workflow shown in Fig. 7.

Starting with the Release & Publish phase, data is made available as resources on the Internet
through regular HTTP Web services, each its own Authority identified by its domain name. In
the Discover & Reuse phase, these resources may then be discovered either through existing
Web indexing and information retrieval techniques, by exploring the LDP resource hierarchy
of a given Authority, or by following the fundamental provenance relations of the FactDAG.

To reuse a discovered resource R with URL U, a consumer retrieves it via HTTP as part of
the Curate & Capture phase and persistently identifies it using the mechanism describe in
Sect. 3.1. Therefore, the consumer checks for the presence of an HTTP Memento-Datetime
header upon retrieval of R to determine if the resource already is a Memento. If so, the
resource is already persistently identified by FactID factid:7ys :U, where 7y is the
Memento’s creation time as indicated by the Memento-Datet ime header. Otherwise, the
resource is lifted to a Fact as described on the original FactDAG paper [G120c], persisting
the state of R at the time of retrieval 7., as a new Memento identified with FactID
factid: ey, : U. The consumer may optionally opt in to archive an immutable copy of this
persistently identified Fact in an archiving service of its choice, e.g., under its own control,
or potentially at a third party or regulatory institution, ensuring the reliable preservation of
consumed resources. If a client requests a non-Memento resource multiple times and is able
to validate that the resource did not change in the meantime (e.g., through a strong HTTP

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 17

Create, Process

& Analyze

Create/Modify/Delete Data

Activity
>
w
(=) 8 Wl A
& Influence Record Metadata
/ Input & Provenance
Curate & Manage &
Capture N > > Preserve
[| 2
FactiD =l il - 2
L Jw 25 e A W
N L,
N
§ t f Archive Archive
i \ ’
= Persistently v b4 7
= 5 Identif \ ’
g 8 % \ X
, o\ \\ “ ”
§ -y i D
Ed i Z v Signs & Symbol
£ 1S URL . f URL igns mbols
§ Retrieve ? D Authority
8 Retrieve / Activity
2
(O entity

Release D Resource
& Reuse Internet & Publish @ Memento Archive

D Lifecycle Step

Discover

Fig. 7: The FactStack data management and preservation lifecycle provides a mapping from
the FactStacks data and control flow to the research data management lifecycle presented in
Fig. 2 using a combination of open Web standards.

ETAG provided by the server), it may choose to either reuse the previously created Fact or
to create an additional Memento analogously to the previous procedure.

During the Curate & Capture phase, an arbitrary number of resources may be collected,
validated, cleansed, integrated, and subsequently provided as an input to the Create, Process
& Analyze phase, in which data is created, modified, or deleted. To capture this process, it
is modeled as a PROV Activity A, capturing all resources used as an input to or resulting
from the execution of the activity as corresponding Entities. All Facts S provided as input to
A are then related to it using the prov:used predicate, while any resources generated in
the process are similarly persistently identified and immutably archived and related to A
using the prov:wasGeneratedBy relation. Notably, if a generated resource S is a new
revision of a previously existing resource R, this information is captured using the triple S
prov:wasRevisionOf R.

During the Manage & Preserve phase, additional metadata may be added to the resource
in order to capture more of its semantic context and provenance, while newly created
resources are uniquely identified for future reference. Finally, resource and metadata

18 Gleim et al.

Signs & Symbols

Process
Application : :
LDP 1 H

Instance
Message Broker

iread read

write /R-001/qualitydata at T, " Vhttps://A.com/R-001/report N | gttps://C.con/A1-001/data H
Trellis ‘.'— Trellis <€ ~
= A , ' C
] publish '
- lpubhsh i R §
: - ” A AN
1subscribe to 1 subscribe to
vhttps://A.com/R-001/report + https://C.com/A1-001/data
Broker A €= == = LT g Broker C |&;="<""""% ‘
> S H notify 1] H f
Se 1 g 1
o @ ' P
8§ " subscribe ! 2 !
= notify : : P 1 notify
1 H
Weaving : :
. 1 Product . i
Machine Data Reporter | ! ¢ Maintenance : Product
Collection o H Manufacturing ! Optimization
@ ' ~ ' R\

Fig. 8: To exemplify, FactStack enables continuous data sharing along the supply chain.

(including any other applicable information such as licensing terms, etc.) are then stored
together, identified by a single PID, during the Release & Publish phase, creating a new
Memento or Fact in the process. Herein, the metadata may either be merged directly into
the primary data — such as possible with RDF sources — or by adding it to the resource’s
LDP Metadata resource accessible using HTTP content-negotiation or discoverable through
HTTP rel="describedby" Link header (cf. Sect. 3.3), which enables structured RDF
metadata to be stored for other text or binary file formats.

As all newly generated data are now persistently identified, immutably preserved, published,
and discoverable on the Web, a full data management lifecycle was completed.

Use Case Application. Revisiting the use case example introduced in Sect. 1 and visualized
in Fig. 1, we can now illustrate the concrete impact of data management and preservation
using FactStack in Fig. 8. In this scenario, manufacturer A, identified by its authority
domain name A. com, collects manufacturing data as part of the production of workpiece
R-001, which it stores identified with internal resource ID /R-001/qualitydata in its
data storage system Trellis A, creating a corresponding Memento at the point in time 7.
The internal Reporter process analyzes this data and creates a quality report with internal
resource ID /R-001/report for this workpiece at the point in time 7, certifying the
part for usage in aerospace applications and again creating a corresponding immutable
Memento. Company C, identified by its authority domain name C.com, now acquires
workpiece R-001 and retrieves the associated certification report Memento, recording its
persistent FactID factid:m:https://A.com/R-001/report. C then stores a copy
of this immutable Fact in its own data storage system Trellis C, where the Fact is still
identifiable and retrievable through the standardized Memento protocol, using its original
FactID, even if A deletes its copy or goes out of business. Even if a Fact becomes

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 19

globally unavailable, knowing its FactID still allows for the derivation of basic metadata (cf.
Sect. 3), as required by the FAIR data principles. Additionally, C subscribes to the resource
https://A.com/R-001/report to be automatically notified of any future updates to the
resource, allowing for immediate reaction to change. C further aggregates and maintains all
data related to airplane A1-001 (both from Product Manufacturing and later Maintenance)
in the RDF graph resource https://C.com/A1-001/data. Airscrew supplier B (which
in this example does not provide any data using FactStack itself) then subscribes to this
resource in order to continuously incorporate the maintenance data collected by C in its own
Product Optimization process, thus (at least in theory) enabling the continuous improvement
of its airscrew product designs.

Following FactStack’s data management lifecycle as illustrated in Fig. 7, metadata about each
Process Execution in the described use case scenario is recorded through a corresponding
PROV Activity. Links to all used (i.e., read) and generated (i.e., written) Facts (as identified
by their corresponding FactIDs) are maintained as part of the RDF metadata of the
corresponding generated resources. Subsequently, the origins and influences of any resource
managed using FactStack can easily be traced back through the captured provenance
relations, even across organizational boundaries and as resources change over time.

Discussion. To summarize, FactStack allows for the integration, exchange, and preservation
of any type of data exchangeable on the Web and from any information system complying
with the basic HTTP REST interface pattern. By implementing data identification, versioning,
persistence, access, discovery, and metadata management through a novel combination of
existing protocols and Web standards, it provides a backward-compatible and sustainable
solution for data management and preservation. FactStack thus meets the system requirements
posed in Sect. 1 and provides a promising solution for the management and preservation of
the constantly evolving and diverse data of the Web and Industry 4.0.

Nevertheless, there are also some notable limitations. Although mandated by the FAIR data
principles [Wil6], FactStack does not currently register nor index (meta)data in a searchable
resource and does not enforce clear and accessible data licensing, nor domain-relevant
community standards. Additionally, FactStack’s reliance on HTTP and its LDP and Memento
protocol extensions can lead to high numbers of HTTP requests when managing data, since
neither protocol supports request batching. Especially for resource discovery and RDF
metadata management, significant performance improvements could likely be accomplished
through the usage of the SPARQL query and update language [PPG13; SH13].

6 Conclusion and Future Work

In this work, we presented FactStack, an interoperable data management and preservation
approach for evolving data on the Web and in Industry 4.0. Based upon open and tightly
integrated with standardized Web technologies, FactStack realizes the FactDAG data
interoperability model approach, providing on-demand support for persistent data archiving,

20 Gleim et al.

identification, retrieval, and synchronization through an interoperable HTTP API, backward-
compatible with existing REST services. By employing dated URIs according to the
FactID scheme, we enable the persistent identification of arbitrary Web resources, resolved,
managed, and preserved through a combination of the HTTP Memento and Linked Data
Platform standards. We further implemented the semi-automated provenance collection
with the W3C PROV-O ontology to enable the standard-compliant collection of data and
process provenance as Linked Data.

To illustrate FactStack’s application in Industry 4.0, we focused on an exemplary, represen-
tative use case scenario in textile engineering for aerospace, highlighting corresponding
opportunities for improved data management and preservation and interoperability. We
support the practical adoption of the FactStack by releasing our implementation, which
demonstrated scalability to high-throughput applications in the presented performance
evaluation, as open-source software. FactStack promotes best practices for data management
by directly supporting the full data management lifecycle and enables the continuous
exchange and reuse of data using Web technologies throughout the supply chain and across
domains, supporting the establishment of transparency and accountability through adequate
and interoperable metadata and provenance management.

For future work, we plan to investigate the integration of the FactStack with existing
enterprise resource planning and manufacturing execution systems to showcase FactStack’s
universality and deployability. Additionally, future work should address related questions
of authenticity, integrity, and trust within the FactDAG model, as well as improving the
performance of the LDP server. Finally, we plan to implement and evaluate easy to use
front-end applications for the intuitive collection of FactDAG data to simplify adoption for
end-users and validate its merit in practical data management and preservation scenarios.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy — EXC-2023 Internet of Production — 390621612.

References

[Ab74] Abrial, J.-R.: Data Semantics. In: Proceeding of the IFIP Working Conference
on Data Base Management. Elsevier, pp. 1-60, 1974, 1sBN: 978-0-7204-2809-4.

[Bal2] Ball, A.: Review of Data Management Lifecycle Models, tech. rep., University
of Bath, 2012.

[BFMOS] Berners-Lee, T.; Fielding, R. T.; Masinter, L. M.: Uniform Resource Identifier
(URI): Generic Syntax, IETF RFC 3986, 2005.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 21

[BHLOI1]

[B113]

[Col9]

[Dal9]

[Fal4]

[Fe06]

[Fi00]

[GD20a]

[GD20b]

[Gil3]

[G120a]

[GI20b]

Berners-Lee, T.; Hendler, J.; Lassila, O.: The Semantic Web. Scientific American
284/5, pp. 34-43, 2001.

Bloomberg, J.: The Agile Architecture Revolution: How Cloud Computing,
REST-Based SOA, and Mobile Computing Are Changing Enterprise IT. Wiley,
2013, 1sBN: 978-1-118-41787-4.

Corti, L.; Van den Eynden, V.; Bishop, L.; Woollard, M.: Managing and Sharing
Research Data: A Guide to Good Practice. SAGE, 2019, 1sBN: 978-1-5264-
8238-9.

Dahlmanns, M.; Dax, C.; Matzutt, R.; Pennekamp, J.; Hiller, J.; Wehrle, K.:
Privacy-Preserving Remote Knowledge System. In: Proceedings of the 2019
IEEE 27th International Conference on Network Protocols (ICNP ’19). IEEE,
2019, 1sBN: 978-1-7281-2700-2.

Faundeen, J. L.; Burley, T. E.; Carlino, J.; Govoni, D. L.; Henkel, H. S.; Holl, S.;
Hutchison, V. B.; Martin, E.; Montgomery, E. T.; Ladino, C. C.; Tessler, S.;
Zolly, L. S.: The United States Geological Survey Science Data Lifecycle Model,
USGS Open-File Report 2013-1265, 2014.

Federal Aviation Administration: Aircraft Certification Service Records, N1-
237-05-003, 2006.

Fielding, R. T.: Architectural Styles and the Design of Network-Based Software
Architectures, PhD thesis, University of California, 2000.

Gleim, L.; Decker, S.: Open Challenges for the Management and Preservation of
Evolving Data on the Web. In: Proceedings of the 6th Workshop on Managing
the Evolution and Preservation of the Data Web (MEPDaW °20). CEUR
Workshop Proceedings, 2020.

Gleim, L.; Decker, S.: Timestamped URLSs as Persistent Identifiers. In: Pro-
ceedings of the 6th Workshop on Managing the Evolution and Preservation of
the Data Web (MEPDaW ’20). CEUR Workshop Proceedings, 2020.

Gil, Y.; Miles, S.; Belhajjame, K.; Deus, H.; Garijo, D.; Klyne, G.; Missier, P.;
Soiland-Reyes, S.; Zednik, S.: PROV Model Primer, W3C Working Group
Note, 2013.

Gleim, L.: FactStack: Interoperable Data Management and Preservation for the
Web and Industry 4.0. In: RDA 16th Plenary Meeting — Poster Sessions. 2020.

Gleim, L. C.; Karim, M. R.; Zimmermann, L.; Kohlbacher, O.; Stenzhorn, H.;
Decker, S.; Beyan, O.: Enabling ad-hoc reuse of private data repositories
through schema extraction. Journal of Biomedical Semantics 11/1, 2020, 1ssN:
2041-1480.

22 Gleim et al.

[G120c]

[G120d]

[HuOO0]

[Kal7]

[KB19]

[Ko10]

[LGD20]

[LLM10]

[LSM13]

[Mal2]

Gleim, L.; Pennekamp, J.; Liebenberg, M.; Buchsbaum, M.; Niemietz, P.;
Knape, S.; Epple, A.; Storms, S.; Trauth, D.; Bergs, T.; Brecher, C.; Decker, S.;
Lakemeyer, G.; Wehrle, K.: FactDAG: Formalizing Data Interoperability in an
Internet of Production. IEEE Internet of Things Journal 7/4, pp. 3243-3253,
2020, 1ssN: 2327-4662.

Gleim, L.; Tirpitz, L.; Pennekamp, J.; Decker, S.: Expressing FactDAG Prove-
nance with PROV-O. In: Proceedings of the 6th Workshop on Managing the
Evolution and Preservation of the Data Web (MEPDaW ’*20). CEUR Workshop
Proceedings, 2020.

Hunter, G. S.: Preserving Digital Information: A How-to-do-it Manual. Neal-
Schuman Publishers, 2000, 1sBN: 978-1-55570-353-0.

Karim, R.; Heinrichs, M.; Gleim, L. C.; Cochez, M.; Porter, E.; Gioia, A.L.;
Salahuddin, S.; O’Halloran, M.; Decker, S.; Beyan, O.: Towards a FAIR
Sharing of Scientific Experiments: Improving Discoverability and Reusability
of Dielectric Measurements of Biological Tissues. In: Proceedings of the
10th International Conference on Semantic Web Applications and Tools for
Health Care and Life Sciences (SWAT4LS *17). Vol. 2042, CEUR Workshop
Proceedings, 2017.

Kunze, J. A.; Bermes, E.: The ARK Identifier Scheme, IETF draft-kunze-ark-24,
2019.

Koop, D.; Santos, E.; Bauer, B.; Troyer, M.; Freire, J.; Silva, C. T.: Bridging
Workflow and Data Provenance Using Strong Links. In: Proceedings of the 22nd
International Conference on Scientific and Statistical Database Management
(SSDBM ’10). Vol. 6187, Springer, pp. 397-415, 2010, 1sBN: 978-3-642-
13817-1.

Lipp, J.; Gleim, L.; Decker, S.: Towards Reusability in the Semantic Web :
Decoupling Naming, Validation, and Reasoning. In: Proceedings of the 11th
Workshop on Ontology Design and Patterns (WOP 20). CEUR Workshop
Proceedings, 2020.

Li, X.; Lebo, T.; McGuinness, D. L.: Provenance-Based Strategies to Develop
Trust in Semantic Web Applications. In: Proceedings of the 3rd International
Provenance and Annotation Workshop on Provenance and Annotation of Data
and Processes (IPAW ’10). Vol. 6378, Springer, pp. 182-197, 2010, 1sBN:
978-3-642-17818-4.

Lebo, T.; Sahoo, S.; McGuinness, D.: PROV-O: The PROV Ontology, W3C
Rec. 2013.

Masinter, L. M.: The ’tdb’ and *duri’ URI schemes, based on dated URIs, IETF
draft-masinter-dated-uri-10, 2012.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 23

[Mel2]

[MF11]
[MM13]
[Mo87]

[Ni20]

[NKO02]

[Pe19a]

[Pel9b]

[Pe19c]

[Pe20a]

[Pe20b]

[Pol7]

[PPG13]

Mersmann, C.: Industrialisierende Machine-Vision-Integration im Faserver-
bundleichtbau, PhD thesis, RWTH Aachen University, 2012, 1sBn: 978-3-
86359-062-8.

Melnikov, A.; Fette, I.: The WebSocket Protocol, IETF RFC 6455, 2011.
Missier, P.; Moreau, L.: PROV-DM: The PROV Data Model, W3C Rec. 2013.

Mockapetris, P.: Domain names - concepts and facilities, IETF RFC 1034,
1987.

Niemietz, P.; Pennekamp, J.; Kunze, I.; Trauth, D.; Wehrle, K.; Bergs, T.: Stamp-
ing Process Modelling in an Internet of Production. Procedia Manufacturing
49/, pp. 61-68, 2020, 1ssN: 2351-9789.

Newman, C.; Klyne, G.: Date and Time on the Internet: Timestamps, RFC
3339, 2002.

Pennekamp, J.; Dahlmanns, M.; Gleim, L.; Decker, S.; Wehrle, K.: Security
Considerations for Collaborations in an Industrial IoT-based Lab of Labs. In:
Proceedings of the 3rd IEEE Global Conference on Internet of Things (GCIoT
’19). IEEE, 2019, 1sBN: 978-1-7281-4873-1.

Pennekamp, J.; Glebke, R.; Henze, M.; Meisen, T.; Quix, C.; Hai, R.; Gleim, L.;
Niemietz, P.; Rudack, M.; Knape, S.; Epple, A.; Trauth, D.; Vroomen, U.;
Bergs, T.; Brecher, C.; Biihrig-Polaczek, A.; Jarke, M.; Wehrle, K.: Towards an
Infrastructure Enabling the Internet of Production. In: Proceedings of the 2019
IEEE International Conference on Industrial Cyber Physical Systems (ICPS
’19). IEEE, pp. 31-37, 2019, 1sBN: 978-1-5386-8500-6.

Pennekamp, J.; Henze, M.; Schmidt, S.; Niemietz, P.; Fey, M.; Trauth, D.;
Bergs, T.; Brecher, C.; Wehrle, K.: Dataflow Challenges in an Internet of
Production: A Security & Privacy Perspective. In: Proceedings of the ACM
Workshop on Cyber-Physical Systems Security & Privacy (CPS-SPC ’19).
ACM, pp. 27-38, 2019, 1sBN: 978-1-4503-6831-5.

Pennekamp, J.; Bader, L.; Matzutt, R.; Niemietz, P.; Trauth, D.; Henze, M.;
Bergs, T.; Wehrle, K.: Private Multi-Hop Accountability for Supply Chains. In:
Proceedings of the 2020 IEEE International Conference on Communications
Workshops (ICC Workshops °20). IEEE, 2020, 1sB~: 978-1-7281-7440-2.

Pennekamp, J.; Buchholz, E.; Lockner, Y.; Dahlmanns, M.; Xi, T.; Fey, M.;
Brecher, C.; Hopmann, C.; Wehrle, K.: Privacy-Preserving Production Process
Parameter Exchange. In: Proceedings of the 36th Annual Computer Security
Applications Conference (ACSAC ’20). ACM, pp. 510-525, 2020, 1sBN:
978-1-4503-8858-0.

Ponemon Institute: The True Cost of Compliance with Data Protection Regula-
tions, White Paper, Ponemon Institute, 2017.

Passant, A.; Polleres, A.; Gearon, P.: SPARQL 1.1 Update, W3C Rec. 2013.

24 Gleim et al.

[SAM15]

[SH13]
[SP17]
[St20]

[TCS18]

[Val4]

[Val8]

[VNS13]

[Wil6]

[WLC14]

[Yul8]

[Zell]

Speicher, S.; Arwe, J.; Malhotra, A.: Linked Data Platform 1.0, W3C Rec.
2015.

Seaborne, A.; Harris, S.: SPARQL 1.1 Query Language, W3C Rec. 2013.
Snell, J.; Prodromou, E.: Activity Streams 2.0, W3C Rec. 2017.

Stack Overflow: Developer Survey 2019, https : / / insights .
stackoverflow.com/survey/2019, 2019 (accessed December 12,
2020).

Trnka, M.; Cerny, T.; Stickney, N.: Survey of Authentication and Authorization
for the Internet of Things. Security and Communication Networks/, 2018, 1ssN:
1939-0114.

Van de Sompel, H.; Sanderson, R.; Shankar, H.; Klein, M.: Persistent Identifiers
for Scholarly Assets and the Web: The Need for an Unambiguous Mapping.
International Journal of Digital Curation 9/1, pp. 331-342, 2014, 1ssn: 1746-
8256.

Vander Sande, M.; Verborgh, R.; Hochstenbach, P.; Van de Sompel, H.: Toward
sustainable publishing and querying of distributed Linked Data archives. Journal
of Documentation 74/1, pp. 195-222, 2018, 1ssn~: 0022-0418.

Van de Sompel, H.; Nelson, M.; Sanderson, R.: HTTP Framework for Time-
Based Access to Resource States — Memento, IETF RFC 7089, 2013.

Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I.J.J.; Appleton, G.; Axton, M.;
Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P.E., et al.:
The FAIR Guiding Principles for scientific data management and stewardship.
Scientific Data 3/, 2016, 1ssN: 2052-4463.

Wood, D.; Lanthaler, M.; Cyganiak, R.: RDF 1.1 Concepts and Abstract Syntax,
W3C Rec. 2014.

Yuan, Z.; Ton That, D. H.; Kothari, S.; Fils, G.; Malik, T., et al.: Utilizing
Provenance in Reusable Research Objects. In: Informatics. Vol. 5. 1, MDPI,
2018.

Zeng, R.; He, X.; Li, J.; Liu, Z.; van der Aalst, W.M. P.: A Method to Build
and Analyze Scientific Workflows from Provenance through Process Mining.
In: Proceedings of the 3rd Workshop on the Theory and Practice of Provenance
(TaPP *11). USENIX Association, 2011.

https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

	Introduction
	Related Work and Foundational Web Technologies
	A Concept for Interoperable Data Management and Preservation
	FactID: Time-based Persistent Data Identification
	Automated Provenance Annotation and Distribution
	Fact Discovery and Creation

	FactStack: A Concrete Realization of the FactDAG Model
	Applying the FactStack to Data Management in Industry 4.0
	Conclusion and Future Work

